|
||
Ответить |
|
|
![]() |
|
Вес репутации:
0
Регистрация: 27.02.2009
Адрес: Москва
Сообщений: 7,248
Сказал(а) спасибо: 574
Спасибок 2,673
в 1,898 сообщениях ![]() |
![]()
Как и что мы тестировали
В настоящее время мы используем для тестирования компьютерных блоков питания тестовый стенд полупромышленного производства, позволяющий снимать кросс-нагрузочные характеристики компьютерных БП мощностью до 950 Вт в ручном и/или автоматическом режиме, с возможностью анализа нагрузочной способности исследуемого БП, проверки силовых параметров, заявленных производителем, а также соответствия спецификациям ATX. Стенд позволяет подавать на каждый из пяти каналов БП (+3,3 В, +5 В, +5VS, +12 В1, +12 В2) нагрузку для исследования отклонений выходных напряжений, а также построить графики кросс-нагрузочных характеристик в автоматическом режиме. Помимо этого, стенд замеряет отклик сигнала Power_Good (Power_OK), а также оснащен функцией аварийного отключения при его пропадании. Стенд управляется 8-битным RISC-процессором PIC18F6520. Все измерения напряжений и токов осуществляются при помощи встроенного в него 10-битного 12-канального АЦП. Управление нагрузкой исследуемого БП осуществляется при помощи пяти независимых источников тока, построенных на операционном усилителе LM324, силовом полевом транзисторе FB180SA10, мощном низкоомном резисторе, 12-битном ЦАП LTC2626 и источнике опорного напряжения LT1790. Стенд имеет десять нагрузочных разъемов: стандартный 24-контактный, 2х2-контактный P4 (12 В2), четыре 4-контактных 12 В1+5 V, два 8-контактных EPS12V и два 6-контактных PCI-E. С помощью специального программного обеспечения стенд, подключенный к ПК, позволяет накапливать историю измерений, создавать графики кросс-нагрузочных характеристик, настраивать режимы измерения, управлять процессом загрузки тестируемого БП и так далее. Номинальная подаваемая мощность стенда - 950 Вт, каналов для нагрузки +12 В напряжения два, при этом суммарный ток нагрузки по этим каналам может достигать 60 А; максимальный ток каналов +3,3 В и 5 В - по 30 А каждый. Как расшифровывать результаты автоматического измерения кросс-нагрузочных характеристик? Рассмотрим это на примере "учебной" диаграммы. ![]() Процесс автоматического измерения кросс-нагрузочных характеристик таков: при определенном начальном уровне тока каналов 3,3 В и 5 В (первоначально от 0 А, плюс указанный в установках стенда до начала тестирования постоянный инкремент) изменяется ток нагрузки 12 В каналов - от нуля до заданного максимума. После достижения максимума заданной нагрузки в 12 В каналах ток каналов 3,3 В и 5 В увеличивается на указанную величину, и процесс нагрузки 12 В каналов идет на убыль, до нуля. Далее вновь ток каналов 3,3 В и 5 В увеличивается на указанную величину, токи 12 В каналов нарастают от нуля до максимума и так далее - до момента достижения граничных условий установленных параметров или срабатывания защиты блока питания. Точки на графике - это дискретные замеры тока в каналах, производящиеся с заданным временным интервалом, в нашем случае - обычно в диапазоне 100-200 мс. По оси ординат (вертикаль) откладывается суммарная мощность двух каналов - 3,3 В и 5 В; по оси абсцисс - соответственно, суммарная мощность 12 В каналов (или, в случае соответствующей настройки режима, одного из 12 В каналов). Таким образом, для того, чтобы выяснить отклонение напряжения для любого сочетания нагрузок по всем ключевым каналам, достаточно лишь уточнить цветовую легенду. Зеленый цвет точек означает отклонение напряжения менее 1%, салатный цвет - не более 2%, желтый цвет - не более 3%, оранжевый - не более 4%, наконец, красный - все еще в рамках стандарта, от 4% до 5%. Критическое отклонение символизирует белый цвет точек - отклонение более 5%, нормированных стандартом. Режимы, закрашенные на диаграмме белым, для эксплуатации непригодны. При работе с панелью статической нагрузки каналов применяется та же цветовая маркировка отклонений, с той лишь разницей, что цвет отображается в соответствующей ячейке, "подсвечивая" численное значение отклонения в процентах с точностью до десятых. Методика измерения КПД блока питания Наша методика тестирования стала чуточку совершеннее - теперь мы можем исследовать коэффициент полезного действия (КПД) блоков питания. Для этого мы используем цифровой ваттметр, который показывает потребляемую БП мощность от сети, и, задавая в ручном режиме исследования потребляемую стендом мощность, можем получить разность потребляемой и отдаваемой мощности, а затем вычислить и коэффициент полезного действия (КПД). Для получения графика зависимости КПД от нагрузки измерения проводились в нескольких точках. КПД позволяет оценить, сколько мощности блока приходится на полезную работу, а сколько уходит на паразитный нагрев БП. Следовательно, чем КПД ниже, тем лучше должна трудиться система охлаждения. Стандарт ATX12V 2.2 требует, чтобы блоки питания выдавали 65 процентов при нетипичной (маленькой) нагрузке и минимум 72 процента - при номинальной. Стандарт 80PLUS требует более 80 процентов КПД в диапазоне от 20% до 100% нагрузки, но этот стандарт необязательный. Результаты тестирования БП Hiper M1000 Заполняем параметры нагрузки тестового стенда согласно маркировке блока питания. ![]() Результаты тестирования блока питания Hiper M1000 в режиме измерения динамических кросс-нагрузочных характеристик в автоматическом режиме выглядят следующим образом. ![]() Замечательный результат. Особенно порадовало полное отсутствие отклонения более процента по шинам 12 В в рабочей области. Видно, что при нагрузке остается еще огромный запас. Шины 3,3 В и 5 В также вызывают только положительные эмоции. Перейдём к исследованию характера нагрузок в ручном режиме. ![]() В ручном режиме мы видим отличные результаты. Только шина в 3,3 В вышла за пределы двухпроцентного отклонения от нормы. Что приятно, при любых вариантах нагрузки (большой попеременной нагрузке на все шины) блок питания выдавал очень качественные показатели, которые не выходили за 2-процентный рубеж. Это положительное влияние оказывает наличие независимой стабилизации всех каналов. ![]() КПД. Тут тоже картина приятная. Впрочем, это неудивительно, ведь Hiper M1000 сертифицирован по стандарту 80PLUS Bronze, что подразумевает КПД при загрузке 20, 50 и 100 процентов не менее 82%, 85% и 82%, соответственно. Результат на 100-процентной загрузке нам получить не удалось ввиду ограничения стенда по мощности. Но, в целом, по динамике изменения КПД и качественным графикам по шинам напряжений, можно предположить, что КПД не просядет ниже 82%. По точкам, которые измерить удалось, блок действительно соответствует высоким требованиям стандарта и может с гордостью привлекать покупателей наклейкой бронзового цвета. Выводы Подведем итоги. Блок питания Hiper M1000 мощностью 1000 Вт полностью соответствует всем заявленным характеристикам. Он позволяет использовать его с несколькими мощными видеокартами, обладает высоким КПД, бесшумен в работе. У него длинные кабели, и он ориентирован на новые производительные системы. Есть ряд особенностей, которые нужно отметить. Это возможность подключить материнские платы только с 24-контатным разъемом (современные) и отсутствие питания устаревшего floppy-дисковода. Записывать это в минусы для блока питания мощностью киловатт - неправильно. К минусам мы бы отнесли спорную систему охлаждения - часть теплого воздуха возвращается назад в корпус, а также отсутствие индикации режимов работы. Плюсы:
Особенности:
На момент написания статьи розничная стоимость блокапитания Hiper M1000 составляла порядка 5600 рублей. За эти деньги конкуренты Hiper предлагают главным образом меньшую мощность, так что покупку можно считать выгодной. 3DNews - Daily Digital Digest |
Ответить |
Опции темы | |
Опции просмотра | |
|
|
![]() |
||||
Тема | Автор | Раздел | Ответов | Последнее сообщение |
Новости GeForce GTS 250: разгон ядра до 1000 МГц | Vector | Новости Hardware | 1 | 15.09.2009 22:33 |